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Abstract. The link invariant associated with the Izergin–Korepin 19-vertex model is deduced
using the method of statistical mechanics. It is shown that the Izergin–Korepin model leads to
an invariant which is precisely the 3-state Akutsu–Wadati polynomial, previously known only
for 2- and 3-braid knots. We give a table of the invariant for all knots and links up to seven
crossings.

1. Introduction

Knots and links are planar projections of embeddings of circles inR3. Link invariants are
algebraic quantities associated with the planar projections, which remain unchanged when
the links are deformed. After the discovery of the Jones polynomial in 1985 [1], it is now
well known that link invariants can be generated from exactly solvable models in statistical
mechanics. For reviews of this development see [2–4].

Most link invariants, such as the Jones polynomials, can be computed recursively for
all knots and links with the help of a Skein relation, starting from that of an unknot. On
the other hand, there exist invariants, such as the Akutsu–Wadati polynomials [5] and the
invariant associated with the chiral Potts model [6], for which the known Skein relation
does not conveniently yield all invariants. In such instances, the method of statistical
mechanics becomes an alternate and viable way of generating invariants. Here, we evaluate
the invariant associated with the Izergin–Korepin model [7], and show that it leads to
precisely the 3-state Akutsu–Wadati polynomial, previously computed only for 2- and 3-
braid knots. In the appendix we give a table of the invariant for all knots and links up to
seven crossings.

2. Formulation

We first briefly outline elements of generating link invariants from soluble vertex models.
For definiteness, we follow the notations of [3].

Starting from an oriented knot or linkK, one first deforms lines ofK to form a
piecewise-linear graphL. The example of formingL for the link 52

1 is shown in figure 1.
One next defines a vertex model onL, which consists of vertices of degree 2 and two types
of vertices of degree 4,+ and−, shown in figure 2. The objective is to construct vertex
weights such that the resulting partition function of the vertex model is an invariant.

Consider generally anN -state vertex model onL for which each edge can be inN
distinct states. We denote the edge states by indices{a, b, c, . . .} ∈ J , whereJ is a set
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Figure 1. (a) The oriented link 521. (b) The associated piecewise-linear graphL.

Figure 2. (a) Vertices of degree 2. (b) Vertices of degree 4.

of N numerical values. To each vertex of degree 2 whose edge state isa as shown in
figure 2(a), associate a weight

ω∗(a) = taθ/2π if the line turns an angleθ to the left

= t−aθ/2π if the line turns an angleθ to the right (1)

wheret is a factor at our disposal. To each vertex of degree 4 whose four incident edges
are in the respective statesa, b, c, d as shown in figure 2(b), associate an ‘enhanced’ vertex
weight

ω∗±(a, d|b, c) = t (a+c−b−d)θ/4πω±(a, d|b, c). (2)

Here, the± signs refer to the two types± of vertices,ω± are vertex weights to be deduced
as explained below, andθ is the angle formed by the two incoming arrows. Then, provided
that the Reidemeister conditions depicted in figure 3 are satisfied, the partition function of
the vertex model onL,

Zvertex(ω
∗) =

∑
edge states

∏
ω∗±(a, d|b, c)

∏
ω∗(a) (3)

where the first product is over all vertices of degree 4 and the second product over all
vertices of degree 2, is an invariant of the knotK. Of course, one needs to ascertain that
the invariant so obtained is unique, namely, it is independent of the angleθ chosen. Indeed,
it has been shown [8] that the invariant so obtained does possess this invariance property,
provided that the weightsω± are charge-conserving, namely, satisfying

ω±(a, d|b, c) = 0 unlessa + b = c + d. (4)

For charge-conserving models, the enhanced weights reduce to

ω∗±(a, d|b, c) = t (a−d)θ/2πω±(a, d|b, c) (5)
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Figure 3. Reidemeister moves.

and, after introducing (5), the conditions depicted in figure 3 can be written as∑
a∈J

taω±(a, b|x, a) = δbx (6a)∑
b,y∈J

ω±(a, b|x, y)ω∓(y, z|b, c) = δacδxz (6b)∑
b,y∈J

tb−aω±(y, x|a, b)ω∓(b, c|z, y) = δacδxz (6c)∑
x,y,z∈J

t (x+y+z−a−c−e)θ/2πω1(y, a|b, x)ω2(x, e|f, z)ω3(z, c|d, y)

=
∑

x,y,z∈J
t (b+d+f−x−y−z)θ/2πω1(d, y|x, e)ω2(b, x|z, c)ω3(f, z|y, a). (6d)

Here, all summations are taken over the setJ of edge states, and the indices{1, 2, 3} in
(6d) stand for the six equations with the replacements

{1, 2, 3} → {+−−}, {+,−,+}, {+,+,−}, {−,+,−}, {−,−,+}, {−,+,+}. (7)

Finally, with weights satisfying (6a)–(6d), one writes the invariant for the knotK as

IK = Zvertex(ω
∗)/Zunknot(ω

∗) (8)

so that it is normalized toIunknot= 1, where

Zunknot(ω
∗) =

∑
a∈J

ta (9)

is the partition function of the vertex model associated with an unknot.
The crux of matter in this formulation is the construction of the weightsω±. Here, the

soluble model comes into play. It has been established [2–4] that if one takes

ω±(a, d|b, c) ∼ lim
u→±∞ω(a, d|b, c|u) (10)
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Figure 4. Vertex configurations of the 19-vertex model.

whereω(a, d|b, c|u) is the solution of the Yang–Baxter equation,∑
x,y,z∈J

ω(x, b|y, a|u− w)ω(f, z|e, x|v − u)ω(z, c|d, y|v − w)

=
∑

x,y,z∈J
ω(e, x|d, y|u− w)ω(z, c|x, b|v − u)ω(f, z|y, a|v − w) (11)

of a vertex model, andu is a rapidity factor appearing naturally in the solution, then the six
conditions (6d) are automatically satisfied. It therefore remains only to satisfy the remaining
conditions (6a)–(6c), which is a much easier task.

3. The Izergin–Korepin model

We now apply the above formulation to the Izergin–Korepin model [7].
The Izergin–Korepin model is a charge-conserving 19-vertex model on the square lattice.

Let the edges of a square lattice be either oriented or unoriented so that each edge can be
in N = 3 states. We further require that there are always the same number of incoming and
outgoing arrows at each vertex. Then, there are 19 allowed vertex configurations which are
shown in figure 4, and this gives rise to a 19-vertex model. Izergin and Korepin [7] found
the following solution of the Yang–Baxter equation which, in the notations of [9], reads

ω1 = ω(0, 0|0, 0|u) = eup3− e−up−3+ p−3− p3+ p−1− p + p5− p−5

ω2 = ω4 = ω(1, 0, |0, 1|u) = ω(0,−1| − 1, 0|u) = e−u(p−1− p−5)+ p5− p
ω3 = ω5 = ω(−1, 0|0,−1|u) = ω(0, 1|1, 0|u) = eu(p5− p)+ p−1− p−5

ω6 = ω8 = ω(−1, 0|1, 0|u) = ω(0, 1|0,−1|u) = eu(p4− 1)+ 1− p4

ω7 = ω9 = ω(1, 0| − 1, 0|u) = ω(0,−1|0, 1|u) = e−u(1− p−4)+ p−4− 1

ω10 = ω11 = ω12 = ω13 = ω(1, 1|0, 0|u) = ω(−1,−1|0, 0|u)
= ω(0, 0|1, 1|u) = ω(0, 0| − 1,−1|u) = eup3− e−up−3+ p−3− p3

ω14 = ω15 = ω(1, 1|1, 1|u) = ω(−1,−1| − 1,−1|u) = eup5− e−up−5+ p−1− p
ω16 = ω17 = ω(1, 1| − 1,−1|u) = ω(−1,−1|1, 1|u) = eup − e−up−1+ p−1− p
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ω18 = ω(1,−1| − 1, 1|u) = e−u(p−1− p−5− p + p−3)+ p5− p−3

ω19 = ω(−1, 1|1,−1|u) = eu(p5− p3− p + p−1)+ p3− p−5. (12)

Here, the three edge states are labelled byJ = {−1, 0,+1} with +1 (−1) representing an
arrow pointing towards right or upward (left or downward) and 0 denoting no arrows.

Next we write

ω±(a, d|b, c) = A± lim
u→±∞ω(a, d|b, c|u)e

−|u| (13)

whereA± are constants. It is then a relatively simple matter to verify that conditions
(6a)–(6c) are all satisfied provided that one takes

p = t−1/2 A± = ±t±7/2. (14)

Thus, using (13) and (14), we find from (12)

ω±(0, 0|0, 0) = t±2

ω−(1, 0|0, 1) = ω−(0,−1| − 1, 0) = t−1− t−3

ω+(1, 0|0, 1) = ω+(0,−1| − 1, 0) = 0

ω+(−1, 0|0,−1) = ω+(0, 1|1, 0) = t − t3
ω−(−1, 0|0,−1) = ω−(0, 1|1, 0) = 0

ω+(−1, 0|1, 0) = ω+(0, 1|0,−1) = t3/2− t7/2
ω−(−1, 0|1, 0) = ω−(0, 1|0,−1) = 0

ω−(1, 0| − 1, 0) = ω−(0,−1|0, 1) = t−3/2− t−7/2

ω+(1, 0| − 1, 0) = ω+(0,−1|0, 1) = 0

ω±(1, 1|0, 0) = ω±(−1,−1|0, 0) = ω±(0, 0|1, 1) = ω±(0, 0| − 1,−1) = t±2

ω±(1, 1|1, 1) = ω±(−1,−1| − 1,−1) = t±1

ω±(1, 1| − 1,−1) = ω±(−1,−1|1, 1) = t±3

ω−(1,−1| − 1, 1) = t−1− t−2− t−3+ t−4

ω+(1,−1| − 1, 1) = 0

ω+(−1, 1|1,−1) = t − t2− t3+ t4
ω−(−1, 1|1,−1) = 0. (15)

4. Knot invariant

It is now straightforward to evaluate the invariant for any knot or linkK by substituting
weights (15) into (3). For the linkK = 52

1, for example, we constructL and label the edges
as shown in figure 1(b), where all angles are taken to beπ/2. This leads to the partition
function

Z52
1
(ω∗) =

∑
a...j=0,±1

t (3a+b+c+f+i−3j)/4ω∗−(d, a|c, b)ω∗−(b, f |a, e)

×ω∗−(e, h|g, d)ω∗+(h, j |i, c)ω∗+(f, i|j, g)
=

∑
a...j=0,±1

t (2a+2b+c+d+e+f−4j)/4ω−(d, b|c, a)ω−(b, f |a, e)

×ω−(e, h|g, d)ω+(h, j |i, c)ω+(f, i|j, g). (16)
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Figure 5. Line configurations for the Skein relation.

Furthermore, the partition function (9) of an unknot is computed as

Zunknot(ω
∗) =

∑
a=0,±1

ta = 1+ t + t−1. (17)

After some algebra, we obtain from (8) the invariant

I52
1
= t−10(1− 2t − t2+ 4t3− 3t4− t5+ 5t6− 3t7− t8+ 5t9

−2t10− t11+ 3t12− t13− t14+ t15).

Generally, the partition sums such as the one in (16) can be performed using a
symbolic computation package, after first eliminating summation variables using the charge-
conserving condition (4). Results of our computation are given in the appendix.

4.1. The Skein relation

It is readily verified that weights (15) satisfy∑
x,y={0,±1}

ω+(a, y|b, x)ω+(x, d|y, c) = (t − t3+ t4)ω+(a, d|b, c)

+(t4− t5+ t7)δacδbd − t8ω−(a, d|b, c) for all a, b, c, d (18)

an identity in which the weightsω± are represented graphically in figure 5, where 2+
denotes the twist of two consecutive+ crossings as shown. This identity then implies the
Skein relation

I2+(t) = (t − t3+ t4)I+(t)+ (t4− t5+ t7)I0(t)− t8I−(t) (19)

whereI2+, I+, I0, I− are invariants of four knots which differ only in the region of a small
disk represented by the configurations 2+,+, 0,− of figure 5, respectively. We find that the
Skein relation (19) is identical to that of the 3-state Akutsu–Wadati polynomial [10]. The
3-state Akutsu–Wadati polynomial is a knot invariant computed [5] from the Skein relation
(19) obtained from the Zamolodchikov–Fateev model [11]. However, the computation was
restricted to knots of 2- and 3-braids and links of 2-braids, and does not include other more
general links and knots such as the knot 61. While it has since been pointed out [4] that
the Akutsu–Wadati polynomial can also be computed in a fashion similar to ours, such a
program has not been carried out. Indeed, we have independently verified that, by following
our formulation, the Zamolodchikov–Fateev model yields the sameω± as that given in (15).
This identifies that the invariant obtained from the Izergin–Korepin model is precisely the
3-state Akutsu–Wadati polynomial.
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4.2. The mirror image of a knot

The mirror imageK∗ of a knotK is obtained by reflectingK about a line, say, they-axis.
This process interchanges the± crossings and the relative arrow positionings at a cross.
For a± crossing inK with the weightω±(a, d|b, c) (cf figure 2(b)), the image inK∗ is
a ∓ crossing with the weightω∓(b, c|a, d). Perusal of (15) shows that, for alla, b, c, d,
these two weights are related by the simple replacement oft → t−1. Furthermore, since a
right-turn inK becomes a left-turn inK∗, and vice versa, the weight (1) is also related by
the replacementt → t−1. It follows that the invariant for the mirror imageK∗ is simply

IK∗(t) = IK(t−1). (20)
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Appendix. Table of invariants

In this appendix we give invariantIK(t) deduced from the Izergin–Korepin 19-vertex model
for all knots and links up to seven crossings. We adopt the shorthand notation of

IK(t) = tm(a0+ a1t − a2t
2− a3t

3 . . .)→ [m][a0, a1, ā2, ā3 . . .] (A1)

where{ai}, i = 0, 1, 2, . . . are nonnegative integers, and a bar denotes that the coefficient
is negative. For example, the invariant for the knot 61 is

t−12(1− t − t2+ 2t3− t4− 2t5+ 3t6− 3t8+ 4t9− 4t11+ 4t12− 3t14+ 2t15− t17+ t18)

→ [−12][1, 1,1, 2,1,2, 3, 0,3, 4, 0,4, 4, 0,3, 2, 0,1, 1]. (A2)

For links we also list the writhew(K) = n+ − n−, wheren± is the number of± crossings.
Invariants for links and the knots 61, 72, 74, 76, 77 are new, which were not reported in [5].

K IK(t)

31 [2][1, 0, 0, 1, 0,1, 1,1,1, 1]

41 [−6][1,1,1, 2,1,1, 3,1,1, 2,1,1, 1]

51 [4][1, 0, 0, 1, 0,1, 1, 0,1, 1, 0,2, 1, 0,1, 1]

52 [2][1,1, 0, 3,2,1, 4,3,1, 3,2,1, 2,1,1, 1]

61 [−12][1,1,1, 2,1,2, 3, 0,3, 4, 0,4, 4, 0,3, 2, 0,1, 1]

62 [−4][1,1,1, 3,1,3, 5,1,5, 6, 0,6, 6, 0,5, 4, 0,2, 1]

63 [−9][1,2,1, 5,4,3, 9,5,5, 11,5,5, 9,3,4, 5,1,2, 1]

22
1 [1][1, 0, 0, 1, 0, 0, 1], w(K) = −2

42
1 [3][1, 0, 0, 1, 0,1, 1, 0,1, 2, 0,1, 1], w(K) = −4

[19][1, 0, 0, 1, 0,1, 1, 0,1, 2, 0,1, 1], w(K) = 4

52
1 [−10][1,2,1, 4,3,1, 5,3,1, 5,2,1, 3,1,1, 1], w(K) = −1

62
1 [5][1, 0, 0, 1, 0,1, 1, 0,1, 1, 0,1, 1, 1,1, 1, 0,1, 1], w(K) = −6

[29][1, 0, 0, 1, 0,1, 1, 0,1, 1, 0,1, 1, 1,1, 1, 0,1, 1], w(K) = 6

62
2 [3][1,1, 0, 3,2,2, 5,3,3, 7,3,3, 5,2,2, 3, 0,1, 1], w(K) = 6

62
3 [−21][1,2,1, 5,3,3, 8,4,5, 9,4,5, 8,2,3, 4, 0,1, 1], w(K) = −6
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[−5][1,2,1, 5,3,3, 8,4,5, 9,4,5, 8,2,3, 4, 0,1, 1], w(K) = 2

63
1 [−20][1,1,1, 4,1,3, 7,5, 8, 1,7, 7, 0,6, 5, 1,2, 1], w(K) = −6

[−4][1,1,1, 4,1,3, 7,5, 8, 1,7, 7, 0,6, 5, 1,2, 1], w(K) = 2

63
2 [−9][1,3,1, 8,6,4, 14,7,6, 17,6,7, 14,4,6, 8,1,3, 1]w(K) = 0

63
3 [−12][1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 2, 1], w(K) = −2

[4][1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 2, 1], w(K) = 6

71 [6][1, 0, 0, 1, 0,1, 1, 0,1, 1, 0,1, 1, 0,1, 0, 0,1, 1, 0,1, 1]

72 [−23][1,1,1, 2,1,2, 3, 0,3, 3, 0,4, 3, 1,4, 3, 1,2, 2, 0,1, 1]

73 [4][1,1, 0, 3,2,2, 5,2,4, 7,2,6, 8,2,5, 5,1,3, 2, 0,1, 1]

74 [2][1,2, 1, 4,6, 2, 6,9, 3, 7,8, 1, 7,7,1, 5,4,1, 3,1,1, 1]

75 [4][1,1, 0, 4,3,3, 9,5,7, 13,5,10, 14,4,9, 11,2,6, 5, 0,2, 1]

76 [−17][1,2, 0, 5,7,1, 12,12,3, 17,13,4, 16,10,5, 12,5,4, 6,1,2, 1]

77 [−9][1,3, 0, 8,9,2, 16,14,5, 21, 15,7, 20,11,7, 14,5,5, 6,1,2, 1]

72
1 [−18][1,2, 0, 3,5, 2, 5,7, 2, 6,7, 1, 6,5, 0, 5,3,1, 3,1,1, 1], w(K) = −3

[−10][1, 2, 0, 3,5, 2, 5,7, 2, 6,7, 1, 6,5, 0, 5,3,1, 3,1,1, 1], w(K) = 1

72
2 [−16][1,2,1, 5,4,4, 10,4,8, 15,4,11, 15,3,10, 11,1,6, 5, 0,2, 1], w(K) = −3

[−8][1, 2,1, 5,4,4, 10,4,8, 15,4,11, 15,3,10, 11,1,6, 5, 0,2, 1], w(K) = 1

72
3 [−16][1,2,1, 5,3,4, 8,3,8, 11,2,9, 12,1,8, 8, 0,4, 3, 0,1, 1], w(K) = −3

72
4 [−3][1,1,1, 4,1,4, 7, 0,7, 8, 2,10, 7, 3,10, 6, 3,7, 3, 1,2, 1], w(K) = 3

72
5 [−24][1,2,1, 6,5,5, 13,6,11, 18,5,14, 19,3,13, 14,1,8, 6, 1,2, 1], w(K) = −7

[−8][1, 2,1, 6,5,5, 13,6,11, 18,5,14, 19,3,13, 14,1,8, 6, 1,2, 1], w(K) = 1

72
6 [−13][1,3, 1, 8,12,1, 19,19,4, 26,20,7, 26,15,8, 19,7,7, 9,1,3, 1], w(K) = −1

72
7 [−11][1, 0, 0, 1, 0, 0, 1], w(K) = −1

[5][1, 0, 0, 1, 0, 0, 1], w(K) = 7

72
8 [−16][1,1,1, 2,1,2, 2, 0,3, 3, 1,3, 3, 1,2, 2, 1], w(K) = −3

73
1 [−12][1,1, 0, 5,4,3, 13,7,9, 19,7,12, 21,5,12, 16,3,9, 8, 0,3, 1], w(K) = −1
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